50 research outputs found

    Deep sub-wavelength nanofocusing of UV-visible light by hyperbolic metamaterials

    Get PDF
    Confining light into a sub-wavelength area has been challenging due to the natural phenomenon of diffraction. In this paper, we report deep sub-wavelength focusing via dispersion engineering based on hyperbolic metamaterials. Hyperbolic metamaterials, which can be realized by alternating layers of metal and dielectric, are materials showing opposite signs of effective permittivity along the radial and the tangential direction. They can be designed to exhibit a nearly-flat open isofrequency curve originated from the large-negative permittivity in the radial direction and small-positive one in the tangential direction. Thanks to the ultraflat dispersion relation and curved geometry of the multilayer stack, hyperlens can magnify or demagnify an incident beam without diffraction depending on the incident direction. We numerically show that hyperlens-based nanofocusing device can compress a Gaussian beam down to tens-of-nanometers of spot size in the ultraviolet (UV) and visible frequency range. We also report four types of hyperlenses using different material combinations to span the entire range of visible frequencies. The nanofocusing device based on the hyperlens, unlike conventional lithography, works under ordinary light source without complex optics system, giving rise to practical applications including truly nanoscale lithography and deep sub-wavelength scale confinement.1165Nsciescopu

    Fabrication of three-dimensional suspended, interlayered and hierarchical nanostructures by accuracy-improved electron beam lithography overlay

    Get PDF
    Nanofabrication techniques are essential for exploring nanoscience and many closely related research fields such as materials, electronics, optics and photonics. Recently, three-dimensional (3D) nanofabrication techniques have been actively investigated through many different ways, however, it is still challenging to make elaborate and complex 3D nanostructures that many researchers want to realize for further interesting physics studies and device applications. Electron beam lithography, one of the two-dimensional (2D) nanofabrication techniques, is also feasible to realize elaborate 3D nanostructures by stacking each 2D nanostructures. However, alignment errors among the individual 2D nanostructures have been difficult to control due to some practical issues. In this work, we introduce a straightforward approach to drastically increase the overlay accuracy of sub-20 nm based on carefully designed alignmarks and calibrators. Three different types of 3D nanostructures whose designs are motivated from metamaterials and plasmonic structures have been demonstrated to verify the feasibility of the method, and the desired result has been achieved. We believe our work can provide a useful approach for building more advanced and complex 3D nanostructures.114sciescopu

    Thermally robust ring-shaped chromium perfect absorber of visible light

    Get PDF
    A number of light-absorbing devices based on plasmonic materials have been reported, and their device efficiencies (or absorption) are high enough to be used in real-life applications. Many light-absorbing applications such as thermophotovoltaics and energy-harvesting and energy-sensing devices usually require high-temperature durability; unfortunately, noble metals used for plasmonics are vulnerable to heat. As an alternative, refractory plasmonics has been introduced using refractory metals such as tungsten (3422 degrees C) and transition metal nitrides such as titanium nitride (2930 degrees C). However, some of these materials are not easy to handle for device fabrications owing to their ultra-high melting point. Here, we propose a light absorber based on chromium (Cr), which is heat tolerant due to its high melting temperature (1907 degrees C) and is compatible with fabrication using conventional semiconductor manufacturing processes. The fabricated device has >95% average absorption of visible light (500-800 nm) independent of polarization states. To verify its tolerance of heat, the absorber was also characterized after annealing at 600 degrees C. Because of its compactness, broadband operational wavelength, and heat tolerance, this Cr perfect absorber will have applications in high-temperature photonic devices such as solar thermophotovoltaics.111Ysciescopu

    Designing nanophotonic structures using deep learning

    No full text
    1

    Negative refraction in vertically multilayered hyperbolic metamaterials

    No full text
    1

    Vertical multilayer hyperbolic metamaterial

    No full text
    1

    조건부 생성적 적대 신경망을 이용한 메타표면 구조체 설계

    No full text
    2

    Metamaterials

    No full text
    22

    Inverse design enables simple, single-celled metasurfaces for multifunctionalities

    No full text
    1
    corecore